

Interconvertions between *δ***-Lactam and** *δ***-Lactone Derivatives Initiated by Unique Transannular Interactions of the Rigid Cyclohexane Boat Structure in Pentacycloundecane**

Hendrik G. Kruger,† Frans J. C. Martins,‡ and Agatha M. Viljoen*,‡

School of Chemistry, University of Kwazulu-Natal, Durban 4001, South Africa, and Department of Chemistry, Potchefstroom University, Potchefstroom 2520, South Africa

cheamv@puknet.puk.ac.za

Received December 4, 2003

Abstract: The pentacycloundecane (PCU) cage structure resembles a perfect boat conformation, and for the first time unique lactam/lactone interconversions on the flagpole carbons of a cyclohexane boat structure are reported. The syntheses of a novel dihydroxy-PCU-*δ*-lactone and two novel N-substituted PCU-*δ*-lactams are reported. Hydrolysis of some of the PCU-*δ*-lactam compounds produced *δ*-lactones, and reaction of the lactones with ammonia or primary amines again produced *δ*-lactams. Reaction mechanisms to account for the unusual interconversion reactions induced by transannular interactions are proposed.

As part of a program to investigate the synthesis and chemistry of amino acids with cage structures, the dione **1** was utilized as a substrate in Strecker reactions. The dione (**1)** is easily obtained from the Diels-Alder adduct of cyclopentadiene and *p*-benzoquinone by intramolecular photocyclization.1,2 As treatment of the dione with Strecker reagents normally leads to cyanohydrin and/or amino nitrile products,3 the one-pot conversion of the dione to the three novel *δ*-lactams $2-4$ is quite unique.^{3,4} The role of the rigid cyclohexane boat structure of the pentacycloundecane skeleton (see alternative view of the dione **1** below) with respect to transannular interactions was highlighted in the proposed mechanisms.^{3,4}

† University of Kwazulu-Natal.

(1) Cookson, R. C.; Crundwell, E.; Hill, R. R.; Hudec, J. *J. Chem. Soc*. **1964**, 3062.

(2) Marchand, A. P.; Allen, R. W. *J. Org. Chem.* **1974**, *39* (11), 1596. (3) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*, 5th ed.; Longman Scientific & Technical: New York, 1989.

(4) Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Joubert, J. A.; *Tetrahedron* **1993**, *49*, 9573.

10.1021/jo0357723 CCC: \$27.50 © 2004 American Chemical Society
Published on Web 06/17/2004

A literature search revealed a vast number of publications about the separate synthesis of lactam and lactone derivatives with a cyclohexane boat basis, but very little is known about the interconversion between these lactam and lactone derivatives. A number of studies focused on the transannular interactions of cyclohexane boat structures as well as transition states involving a boat conformation.5,6 The cyclohexane boat structure is a transition state.7-⁹ Therefore, performing reactions on the two flagpole carbons is therefore difficult to envisage, except if this conformation is conveniently rigidified as in the pentacyloundecane skeleton or in alternative structures.¹⁰

The effect of transannular interactions on the pentacycloundecane skeleton has been throroughly studied.^{1,4,11} However, the interconversions between the PCU-lactam and lactone derivatives have not been investigated.

Certain lactams can be hydrolyzed to their corresponding amino acids,¹² and our initial aim was to convert the different lactam compounds (**2**-**4**) to their corresponding amino acids. Substituent groups on the ring $13-15$ as well as ring strain¹⁶⁻¹⁸ play an important role on the ease of hydrolysis. An amino group on the ring carbon atom adjacent to the nitrogen atom in the *â*-lactam ring greatly increases the rate of hydrolysis.¹⁶ These type of β -amino lactams are all moisture sensitive. Hydrolysis of lactam compounds does not always produce the corresponding amino acid,19,20 as was the case with the cyano lactam **3**. ⁴ The cyano lactam was selectively hydrolyzed to three different novel lactone compounds (**5**-**7**).4

The cyanolactam **3** is very susceptible to ring cleavage in acidic media and is hydrolyzed to the corresponding

(6) For Cope rearrangements with transition states involving a cyclohexane boat structure, see: (a) Hoffmann, R.; Woodward, R. B. *J. Am. Chem. Soc.* **1965**, *87*, 4389. (b) Fukui, K.; Fujimoto, H. *Tetrahedron* **1966**, 251. (c) Gajewski, J. J.; Jimenez, J. L. *J. Am. Chem. Soc.* **1986**, *108*, 468.

(7) Dunitz, J. D. *J. Chem. Ed.* **1970**, *47*, 488.

(8) Leventis, N.; Hanna, S. B.; Sotiriou-Leventis, C. *J. Chem. Ed*. **1997**, *74* (7), 813.

(9) Sauers, R. R. *J. Chem. Ed*. **2000**, *77* (3), 332.

(10) Wiberg, K. B.; Matturro, M.; Adams, R. *J. Am. Chem. Soc.* **1981**, 1600.

(11) For transannular interactions on the PCU cyclohexane boat structure, see: (a) Sasaki, T.; Eguchi, S.; Kiriyami, T. Hiroaki, O. *Tetrahedron* **1974**, *30*, 2707. (b) Barborak, J. C.; Khoury, D.; Maier, W. F.; Schleyer, P. v. R.; Smith, E. C.; Smith, W. F.; Wyrick, C. *J. Org. Chem.* **1979**, *44*, 4761. (c) Martins, F. J. C.; Viljoen, A. M.; Coetzee, M.; Fourie L.; Wessels, P. L. *Tetrahedron* **1991**, *47*(44), 9215.

(12) Fryth, P. W.; Waller, C. W.; Hutchings B. L.; Williams, J. H. *J. Am. Chem. Soc.* **1958**, *80*, 2736.

[‡] Potchefstroom University.

⁽⁵⁾ For studies about the interactions of substituents on cyclohexane boat structures: (a) Levisalles, J. *Bull. Soc. Chim. Fr.* **1960**, 551. (b) Stolow, R. D. *J. Am. Chem. Soc.* **1961**, *83*, 2592. (c) Stolow, R. D. *J. Am. Chem. Soc.* **1964**, *86*, 2170. (d) Stolow, R. D.; McDonagh, P. M.; Bonaventura, M. M. *J. Am. Chem. Soc.* **1964**, *86*, 2165. (e) Camps, P.; Iglesias, C. *Tetrahedron Lett.* **1985**, *26* (44), 5463. (f) Fitjer, L.; Scheuermann, H.-J.; Klages, U.; Wehle, D.; Stepenson, D. S.; Binsch, G. *Chem. Ber.* **1986**, *119*, 1144.

SCHEME 1. Conversion of the Cyano Lactam 3 to the Dihydroxylactone 10

novel lactone **5** at room temperature.4 Under different reaction conditions the other novel lactones **6** and **7** were obtained.4

The *δ*-lactone **9**²¹ with a cyclohexane boat skeleton as the basis was reported in 1929. *cis*-4-Hydroxycyclohexanecarboxylic acid **8** is converted to the corresponding cyclohexane boat *δ*-lactone **9**, while the trans form of **8** does not lactonize.5,22

The corresponding lactam of 9 was also reported,^{12,23} but interconversion between these lactam and lactone derivatives have not been investigated.

In view of the discussion above, it was decided to investigate the hydrolysis of the polycyclic *δ*-lactam derivatives **²**-**⁴** as well as the interconversion of the lactam and lactone derivatives. These interconversions on a cyclohexane boat structure had not been reported before.

The dihydroxylactam **2** could not be converted to the corresponding lactone in acidic media. Similarly, the amino hydroxylactam **4** is surprisingly stable under acidic reaction conditions. The obvious difference between the lactams **2** and **4** with respect to the cyano lactam **3** is the ability of the cyano group to stabilize^{4,24,25} an intermediate cation required for ease of hydrolysis. The mechanism proposed for the hydrolysis of **3** in acidic media to produce the lactone **5** was reported previously.4

Alkaline hydrolysis of the cyano hydroxylactam **3** unexpectedly led to cyano group substitution. Treatment of **3** with 30% sodium hydroxide under reflux conditions produced the novel dihydroxylactone **10**. A possible explanation for the formation of the lactone **10** from alkaline catalyzed hydrolysis of the lactam **3** is provided in Scheme 1.

Nucleophilic attack from hydroxyl anions on the carbonyl carbon atom of the lactam **3**, to displace the cyanide group in **11**, is probably energetically a more likely process than nitrile group hydrolysis. The highly reactive imine group in **12** is easily hydrolyzed to the keto acid **13** which spontaneously converts to the lactone **10**. The infrared spectrum, FAB mass spectrum, and NMR data all support the structure of **10**. The product tests negative for nitrogen. The NMR data of **10** is provided in the Experimental Section. A diacetate was obtained when the lactone **10** was acetylated, confirming the presence of two hydroxyl groups.

It is expected that the lactams **2** and **4** should follow the same reaction route with alkaline hydrolysis at reflux temperature. Treatment of the amino hydroxylactam **4** with 30% sodium hydroxide under reflux conditions produced the expected conversion to the dihydroxylactone **10**. However, a similar conversion of the dihydroxylactam **2** to **10** could not be achieved even after the same treatment for 48 h. Treatment of the amino hydroxylactam **4** under elevated temperature and pressure (170 °C in a pressurized reaction vessel) in the presence of water and a catalytic amount of either acetic acid or diethylamine produced the hydrate of **2**. ²⁶ When amino hydroxylactam **4** is refluxed in concentrated hydrochloric acid for 48h the dihydroxylactone **10** was obtained in

⁽¹³⁾ Sheenan J. C.; Bose, A. K. *J. Am. Chem. Soc.* **1951**, *73*, 1761. (14) Holley R. W.; Holley, A. D. *J. Am. Chem. Soc.* **1949**, *71*, 2124.

⁽¹⁵⁾ Holley R. W.; Holley, A. D. *J. Am. Chem. Soc.* **1950**, *72*, 2771. (16) Manhas, M. S.; Bose, A. K. In *Beta-Lactams: Natural and*

Synthetic; Wiley-Interscience: New York, 1971; pp 61-63.

⁽¹⁷⁾ Koch, T. U.S*.* 2,453,234, 1948.

⁽¹⁸⁾ Koch, T. Ger*.* 812,076, 1951.

⁽¹⁹⁾ Perelman, M.; Mizak, S. A. *J. Am. Chem. Soc.* **1962**, *84*, 4988.

⁽²⁰⁾ Opitz, G.; Koch, J. *Angew. Chem., Int. Ed. Engl.* **1963**, *2*, 152 (21) Balasˇ, F.; Sˇ rol, L. *Collect. Czech. Chem. Commun.* **¹⁹²⁹**, *^I*, 658.

⁽²²⁾ Hardegger, E.; Plattner, Pl. A.; Blank, F. *Helv. Chim. Acta* **1944**, *27*, 793.

⁽²³⁾ Aubry, A.; Protas, J. *Acta Crystallogr.* **1973**, *B29*, 2576.

⁽²⁴⁾ Dixon, D. A.; Charlier, P. A.; Gassman, P. G. *J. Am. Chem. Soc.* **1980**, *102*, 3957.

⁽²⁵⁾ Paddon-Row, M. N.; Santiago, C.; Houk, K. N. *J. Am. Chem. Soc*. **1980**, *102*, 6561.

⁽²⁶⁾ The dihydroxylactam **2** crystalizes with 1 equiv of water, being hydrogen bonded to the lactam. Kruger, H. G.; Martins, F. J. C.; Viljoen, A. M.; Boeyens, J. C. A.; Cook, L. M.; Levendis, D. C. *Acta Crystallogr.* **1996**, *B52*, 838.

)C Note

SCHEME 2. Conversion of the Cyano Lactone 10 to N-Substituted Lactam Derivatives

reasonable yield. The reaction proceeded much faster in a medium-pressure reaction vessel containing 10% hydrochloric acid.

Ammonolysis of lactones can yield lactams. $27-29$ As anticipated, the dihydroxylactam **2** was obtained upon treatment of the cyano hydroxylactone **5** (1 g) with 25% ammonia (10 or 100 mL). Nucleophilic attack of ammonia on the carbonyl carbon atom of **5** will probably lead to carbon-oxygen bond cleavage with simultaneous nitrile group elimination. A possible mechanism is suggested in Scheme 2. Attack of the electron pair on the nearby nitrogen atom of the carbonyl carbon atom in **15** should lead to the formation of the dihydroxylactam **2**.

Similar conversions of the cyano hydroxylactone **5** to lactam derivatives were achieved by treatment of **5** with ethylamine or benzylamine, which afforded the novel N-substituted lactam compounds **17** and **18**, respectively. The structures of the lactams **17** and **18** were elucidated from 13C and 1H NMR studies and the data is provided in the Experimental Section.

Confirmative evidence for the structure of **17** was obtained from a ¹³C NMR spectrum recorded in $(CD_3)_2$ -SO, which was treated with two drops of a mixture of 60% D_2O and 40% H_2O to impose partial exchange of protons. Double signals were observed for both quaternary carbon signals indicating that both bear groups with only one deuterium-exchangeable proton. MS and IR spectra also support the proposed structure of **17**.

The absorption bands in the infrared spectrum of the *N*-benzyl-substituted lactam **18** are very similar to that of **17**. The EI mass spectrum of **18** exhibits a molecular ion at *m*/*z* 309, which corresponds with a molecular formula of $C_{19}H_{19}NO_3$. As in the case of 17 partial exchange of protons influenced only the quaternary

carbon atom resonances in the ¹³C NMR spectrum (δ_c 90, 99 and δ_c 79, 95 are registered as double signals).

It is expected that ammonolysis of the dihydroxylactone **10** should proceed via the same route as proposed for the ammonolysis of the cyano hydroxylactone **5** (see Scheme 2). Surprisingly, treatment of **10** (1 g) with 25% ammonia (10 mL) led to the formation of the amino hydroxylactam **4** instead of the expected dihydroxylactam **2**. When the reaction was repeated with 10 times more ammonia (100 mL), the dihydroxylactam **2** was obtained. [Note that only the dihydroxylactam **2** was obtained when the cyano hydroxylactone **5** (1 g) was treated with 25% ammonia (10 or 100 mL)]. However, treatment of the dihydroxylactone **10** with ethylamine or benzylamine produced the expected N-substituted *δ*-lactams **17** and **18**, respectively, in a similar way as for the ammonolysis of the cyano hydroxylactone **5**.

The formation of the amino hydroxylactam **4** upon treatment of the dihydroxylactone **10** (1 g) with 25% ammonia (10 mL) can probably be attributed to the different solubility of the intermediates **15** and **19** (see Scheme 3). Note that both the reactant **10** and products **2** and **4** are relatively insoluble in aqueous media. In general structures with a carbonyl group (**15**) should be less soluble in aqueous solution compared to its corresponding imine (**19**). A possible explanation could be that when the reaction is performed in more diluted conditions (1 g of **10** in 100 mL of ammonia), enough of the intermediate **15** is dissolved to yield the kinetic product **2**. When the reaction is performed in more concentrated conditions (1 g of **10** in 10 mL of ammonia), the intermediate **15** presumably does not dissolve sufficiently and is converted to a more soluble form, namely the corresponding imine **19**. Instantaneous transannular cyclization of **19** to the amino lactam **4** follows.

Initially, it was not clear whether the dihydroxylactam **2** could serve as intermediate in the formation of the amino lactam **4** (see Scheme 3).

Treatment of the dihydroxylactam **2** with 25% ammonia at room temperature for 24 h only produced

⁽²⁷⁾ March, J. In *Advanced Organic Chemistry*, 3rd ed.; John Wiley and Sons: New York, 1985; 375.

⁽²⁸⁾ Torok, D. S.; Ziffer, H.; Meshnick, S. R.; Pan, X.; Ager, A. *J. Med. Chem.* **1995**, *38*, 5045.

⁽²⁹⁾ El Sayed, K. A.; Orabi, K. Y.; Dunbar, D. C.; Hamann, M. T.; Avery, M. A.; Sabnis, Y. A.; Mossa, J. S.; El-Feraly, F. S. *Tetrahedron* **2002**, *58*, 3699.

OC Note

starting material on subsequent evaporation of the excess ammonia. Since the amino hydroxylactam **4** is less soluble than the dihydroxylactam **2** the reaction was repeated with a minimum amount of ammonia in an effort to induce precipitation of the desired product **4**. Instead the hydrate26 of the dihydroxylactam **2** was obtained. The intermediacy of the dihydroxylactam **2** in the conversion of the dihydroxylactone **10** to **4** was confirmed by forced dissolution of **2** in ammonia (150 °C for 18 h), which indeed produced the amino hydroxylactam **4**.

Treatment of the cyano lactam **3** (1 g) with ammonia (10 or 100 mL) also produced the amino lactam **4**. A similar mechanism as proposed in Scheme 3 accounts for this transformation of the lactam **3** via intermediates **15** and **19** to the lactam **4**.

This observation explains the reason why treatment of the dione **1** with an excess of sodium cyanide and ammonia produces⁴ the amino lactam 4 although the formation of the cyano lactam **3** should also occur, followed by conversion of the latter to the amino lactam **4**. This experimental observation, combined with the rate of hydrolysis of the lactam compounds **3** and **4**, implies that the amino lactam **4** is the thermodynamically determined product.

Acknowledgment. The authors thank Dr. Glenn Maguire, University of KwaZulu-Natal, for his kind advice and assistance with the presentation of the results and Dr. L. Fourie and Mr. A. Joubert, University of Potchefstroom, for the MS and NMR spectra, respectively.

Supporting Information Available: All experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0357723